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ORION-B (co-PIs: J. Pety & M. Gerin)

Science goals

• Elucidate link between
star formation and the
structure of host parent
(dynamics, physics, &
chemistry).

• Build an unbiased
dataset, with tracers of all
of the components of the
host parent.

Field of view & Spatial resolution
5 degree2 or 18× 13pc
@ 26” or ∼ 50mpc
⇒ One image: ∼ 106 pixels.

Bandwidth & Spectral resolution
40GHz at 200kHz resolution
⇒ 200 000 images, i.e., at 24
images per seconds, it makes
a movie of 2h45!

A sea of noise Median noise level
0.1−0.5K ⇒ Clear signal de-
tected in ∼ 1200 channels, or
0.5% of the data (a video of
about 50 seconds).

Modern statistical (Machine Learning) methods allow one

• to exploration of high dimensional data ;
• and thus to shed light on star formation that is a statistical question.
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How to best combine these line emissions to improve
our knowledge of GMCs and star formation?
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Tracing the amount of gas along the line of sight
Direct observation of cold H2 is impossible ⇒ Use detectable emission from other tracers.
Tracer #1: FIR thermal emission of dust grains ⇒ Requires space telescope (e.g., Herschel).
Tracer #2: Molecular tracers like CO and a conversion factor (XCO).

Pro Observable from the ground ⇒ high angular observation.
Con Relationship between intensity and the amount of gas saturates.

⇒ We can do better with multi-line observations and machine learning (eg, random forests.)

Bolatto et al. 2013 Pety et al. 2017 Gratier et al. 2017

Unresolved GMCs Orion (resolved) PCA

Astrophysics meet data science for the study of Giant Molecular Clouds J. Pety and the DAOISM consortium 2024



Quality of the N(H2) inference as a function of the method
(Gratier et al. 2021)
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Which tracers have the largest contribution?
(Gratier et al. 2021)

Four key species 12CO, 13CO, C18O, HCO+ (1-0) lines.
Decision path for each pixel ⇒ Contribution of each ob-

servable to the column density.
⇒ Insight into the physics and chemistry.
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Why is it possible to constrain the H2 column density
mostly based on CO isotopologues? (Roueff et al. 2021)

C18O J=1–0, 13CO J=1–0, 12CO J=1–0

Simple reasoning CO isotopologues have
1. similar chemistries;
2. similar radiative transfer properties.
⇒ Their line ratios should be simple probes of the

elemental abundance of carbon and oxygen to
monitor the progress of the stellar nucleosynthe-
sis in nearby galaxies.

The image suggests this reasonning is incorrect Why?
⇒ Need to invert the observations.
Difficulties

• Limited signal-to-noise ratio.
• Huge number of pixels.
⇒ Cramer-Rao Bound: a robust statistical tool to

tell us which amount of information can actu-
ally be extracted.

⇒ Automated quality assessment.
Results Molecular chemistry is a key player!

• Fractionation of C+: 12CO + 13C+ → 13CO +
12C+

• Selective photo-dissociation destroys more
C18O than 13CO and 12CO.
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Bias vs variance when fitting multi-species molecular lines
with a non-LTE radiative transfer model (Roueff et al. 2024)

Same data J=1–0 lines of CO isotopologues and HCO+.
Same model RADEX.
Different assumptions Combination of lines or relative abundances.
⇒ Varied results.
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Accuracy(Column Density) >
Accuracy(Kinetic Temperature) > Accuracy(Volume Density)

N(13CO) N(C18O)
N(HCO+)

N(H13CO+)

Tkin nH2

0

0.1

0.2

0.3

0.4

0.5

0.6

Astrophysics meet data science for the study of Giant Molecular Clouds J. Pety and the DAOISM consortium 2024



On the need of a sandwich model (Ségal et al., in prep.)
Optically thick lines are more sensitive to the outer translucent gas.
Optically thin lines are easier to detect in the inner dense cores.

From a mono-layer model
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Inverting PDR models to derive physical parameters
Challenges and solutions (Palud et al., 2023a)

Sophisticated PDR models
• Many physical and chemical

processes must be modeled.
• Micro-physical parameters (eg,

chemical rates) may still be un-
certain.

Large dynamical range
• Calibration uncertainty (often

neglected multiplicative “noise”)
is important at high Signal-to-
Noise Ratio.

• Censored information at low
Signal-to-Noise ratio.

Hidden variables
• Geometry.
• Observations of only minor

tracers of the gas.
Solution New, fast Bayesian framework

that takes into account additional
and multiplicative noise, censored
information, and spatial regulariza-
tion ⇒ Derivation of parameters
and associated credibility intervals.
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Fast, accurate, and robust, neural network-based,
emulation of complex physical models (Palud, Einig, et al. 2023b)

State-of-the-art ISM models
• Many physical and chemical processes.
• Too slow for Bayesian inference.

Solution Emulate the code with a neural network
trained on a grid of pre-computed models.

Specific strategies to be accurate
1. Outlier removal procedure to avoid repro-

ducing numerical instabilities.
2. Clustering method to divide the prediction

job.
3. Dimension reduction technique to size the

neural network.
4. Augmented inputs to ease the learning of

non-linearities.
5. Dense architecture to ease the learning of

simple relations.
Results on Meudon PDR code:

Average error 4.5%.
Speed 100 to 1000 × faster.
Memory imprint 10 × smaller.
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Deep learning denoising by dimension reduction
(Einig, et al. 2023)

State-of-the-art observations
• Large intensity dynamic.
• Interesting science often happens at

low/medium S/N.
Solution Filter noise by compress-

ing/decompressing useful information ⇒
Neural Network Autoencoder.

Specific strategies to be avoid deformation
1. Estimate the amount of redundant infor-

mation in the dataset to fix the size of the
autoencoder.

2. Use a locally connected autoencoder to
only explore correlated channels.

3. Take into account the fact that signal vox-
els are embedded in a sea of noise with a
specific pay-attention loss function.

Result
• Reduced (not suppressed) noise ⇒ much

better determination of the moments of
the line.

• No deformation of the signal at high S/N.
• No creation of false signal at low S/N.
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How to bridge the gap of spatial scales
between Milky Way and nearby galaxy studies?

12CO, 13CO, and C18O J=1–0 in Orion B

12CO J=1–0 in IC 342 (Querejeta et al. 2023)

Astrophysics meet data science for the study of Giant Molecular Clouds J. Pety and the DAOISM consortium 2024



To make the best use of, e.g., the PHANGS survey?
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Is W (HCN J=1–0)/W (12CO J=1–0) a dense gas tracer?
(Santa-Maria et al. 2024)

In part
• High values in dense filaments and cores.
• Low values in diffuse gas.

Also sensitive to far UV field Higher values in Photo-
dissociation Regions at the edges of HII regions.

The net outcome depends on the proportion of both kind
of gas in the beam.
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Understanding spatially unresolved measurements
of molecular line emission (Zakardjian et al. subm.)

Generating 1000 realistic unresolved observations of a molecular cloud
⇒ a single unresolved spectrum per line and mocked cloud.

• Draw random fields of the column density and centroid velocity using fractional Brownian
motion.

• Shuffle the spectra of the ORION-B cubes to follow these random fields.
• Average the resolved spectra.

Effect on linewidths and peak temperatures

• Unresolved line profile parameters vary significantly purely
because of the sub-beam distribution of the emission.

• Variability of up to a factor of 2 for N2H+ J=1–0.
• Variability of less than 5% for CO J=1–0.
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Investigating the magnetic field strength across
the Flame Nebula (Beslic et al., 2024, PI: D. Lis)

Status Lack of knowledge of the magnetic field in
the evironment of new-born stars at scales of
0.1pc or 50′′.

Our goal Correlate changes in the magnetic field
geometry with corresponding changes in the
kinematic properties of the gas.

Results
B-field morphology

• Parallel to edges of the expanding HII
region.

B-field strenght using
Bpos ∼ 1.8×√

nH2

∆v√
σc(ϕ)

[µG].

Bubble West 30− 90µG
Bubble East 100− 200µG
Filament 30− 100µG
Filament + Bubble 80− 150µG
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What could be done in ∼1000 hr with the IRAM-30m ALHAMBRA

Instrument # 3 mm FoV Sensitivity Data Comment
ind. Beams degree2 mK TB

EMIR at 30m 1 5 100 0.5 ORION-B like
NG Multi-Beam at 30m 25 5 15 0.5 Deep ORION-B
NG Multi-Beam at 30m 25 125 100 17.0 % of galactic plane

3mm HEMT 3-beam prototype.
P. Serres, O. Garnier, & the front-end group

1mm SIS 7-beam prototype.
D. Maier et Q. Moutote & the front-end group
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An actual collaboration between data scientists and astronomers

Collaboration started in may 2018

• 3 co-directed PhD students:
P. Palud, L. Einig, L. Segal.

Articles

• 5 in common in 2023.
• 3 of them led by data scientists.
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Conclusions

New inter-disciplinary collaboration It takes time and will but it pays off.

The black box approach most often fails Adapting the machine learning approach to the astro-
physical problem leads to success.

Only the beginning of the story We need multi-beams to increase the sampling of conditions at
high S/N.

Chemistry challenge A more quantitative understanding of the detailed of the photo-chemistry of
the CO isotopologues is required.
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Web site http://www.iram.fr/~pety/ORION-B
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Additional material
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Filamentary network in Orion B (Orkisz et al. 2019)

Wide range of densities
• Linear (1 − 100Msun pc−1) and volume

(2× 103 − 2× 105 cm−3) densities.
• Upper end is similar to other studies ⇒

Many filaments have low intensity con-
trast compared to the background.

Dominated by low-density, thermally subcriti-
cal filaments
• Most of the filaments are not collapsing

to form stars ⇒ Correlated with low star
formation efficiency (Lada et al. 2010,
Megeath et al. 2012).

• Only 1% of the mass in super-critical fil-
aments inside the star forming regions
(NGC 2023 and NGC 2024).
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Horsehead WHISPER ⇒ A forest of faint lines
Red curve: 5σ & Green curve: 10σ with σ ∼ 5mK
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