L'ère du calcul exascale une opportunité à saisir pour l'astrophysique

Geoffroy Lesur (IPAG Grenoble)

CNRS researcher President of the Astrophysics & Geophysics committee (CT4) @ GENCI PNP3 Established by the European Commi

European Research Council

Part I: Exascale supercomputers

1 Exaflop = 10^{18} floating point operation per second

Top #500 super computers in the world

PERFORMANCE DEVELOPMENT

	MAY 2024			COUNTRY	CORES	Rmax pflop/s	POWER MW
1	Frontier	HPE Cray EX235a, AMD Opt 3rd Gen EPYC (64C 2GHz), AMD Instinct MI250X, Slingshot-11	DOE/SC/ORNL	USA	8,699,904	1,206.0	22.7
2	Aurora	HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 (52C 2.4GHz), Intel Data Center GPU Max, Slingshot-11	DOE/SC/ANL	USA	9,264,128	1,012.0	38.7
3	Eagle	Microsoft NDv5, Xeon Platinum 8480C (48C 2GHz), NVIDIA H100, NVIDIA Infiniband NDR	Microsoft Azure	USA	1,123,200	561.2	
4	Fugaku	Fujitsu A64FX (48C, 2.2GHz), Tofu Interconnect D	RIKEN R-CCS	Japan	7,630,848	442.0	29.9
5	LUMI	HPE Cray EX235a, AMD Opt 3rd Gen EPYC (64C 2GHz), AMD Instinct MI250X, Slingshot-11	EuroHPC/CSC	Finland	2,220,288	379.7	6.01

Towards Exascale Machines An electrical power issue

- The current average power consumption of a x86 processor (your laptop!) is ~2Gflop/s/W
- an Exaflop machine would need about 500 MW of power=1 french nuclear reactor
- factor 6

Accelerated clusters (GPU-like) are mandatory

='?

The « socially acceptable » power consumption is 30 MW reduce the energy footprint by a

Energy efficiency The green 500 list

- all of the « green » cluster are accelerated (Efficiency> 50 GFlops/W)
- The most efficient clusters are not the largest (small clusters also benefit from acceleration!)

The World Top #6 clusters in energy efficiency (November 2023)

Rank	TOP500 Rank	System	Cores	Rmax (PFlop/s)	Power (kW)	Energy Efficiency (GFlops/watts)
1	293	Henri - ThinkSystem SR670 V2, Intel Xeon Platinum 8362 32C 2.8GHz, NVIDIA H100 80GB PCIe, Infiniband HDR, Lenovo Flatiron Institute United States	8,288	2.88	44	65.396
2	44	Frontier TDS - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	120,832	19.20	309	62.684
3	17	Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Suprieur (GENCI-CINES) France	319,072	46.10	921	58.021
4	25	Setonix – GPU - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Pawsey Supercomputing Centre, Kensington, Western Australia Australia	181,248	27.16	477	56.983
5	92	Dardel GPU - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE KTH - Royal Institute of Technology Sweden	52,864	8.26	146	56.491
6	8	MareNostrum 5 ACC - BullSequana XH3000, Xeon Platinum 8460Y+ 40C 2.3GHz, NVIDIA H100 64GB, Infiniband NDR200, EVIDEN EuroHPC/BSC	680,960	138.20	2,560	53.984

High Performance Computing in France

Installed CPU power slowly declines

Part II: A new frontier for numerical modeling

PROJET EXASCALE FRANCE

Les applications françaises face à l'exascale

https://hal.science/hal-03736805

COMMUNAUTÉ DES CODES RECENSÉS DANS LE GROUPE DE TRAVAIL SCIENCES DE L'UNIVERS

Exascale applications

Machine learning	HPC	High throughput computing	Complex workflow
Physics driven	 Simulation of complex 	 Operational processing 	- Scalable processing chain,
 Code emulation 	phenomenon, multi-	chain	HPC/HPDA coupling
 Multi-scale modeling 	physics models	 Real time data processing 	- Task graph parallelism
 Empirical models from 	 High spatial resolution, 	(e.g. satellite data)	
simulation data	multi-scale exploration		
	(zoom)		
Data driven:	- Uncertainities (ensemble		
- Analyse (classification)	simulation)		
- Data assimilation	 Energy profiling, low 		
- Uncertainity quantification	energy footprint simulation		

Some astrophysical applications **Multi-scale physics**

Reconnection sheets in black hole magnetospheres [El Mellah+ 2023]

Convection in exoplanet atmospheres [Daley-Yates+ 2021]

Secular evolution of

Disc formation & evolution in YSOs [Mauxion+2024]

Simulation & Machine learning

Reconstruction of the reionisation field through machine learning [Hiegel+2023]

Part III: Exploiting exascale computer

A not-so-easy move Share of astrophysics & Geophysics on national clusters

Répartition des heures CPU demandées normalisées par CT

Source: GENCI

Moving towards accelerated machines

CPU world MIMD (multiple instruction multiple data)

Moving to accelerated machines requires a complete rethinking of algorithms and memory access patterns

« Running on GPUs is simple, just add -fxxx when you compile »

Heard during a high energy astro workshop

« Running on GPUs is simple, just add -fxxx when you compile »

Heard during a high energy astro workshop

« Running on GPI just add -f

you compile »

Heard during a high energy astro workshop

2

The need for accelerated codes

- Not possible to directly use one's favorite code [Ramses, Pluto, AMR VAC, Flash] on an accelerated machine (SIMD!)
 - One needs to port codes, or to write them from scratch (in both cases, years of development)
 - Diversity: each manufacturer tend to promote its own technology (e.g. CUDA@NVidia, HIP@AMD, SYSCL@INTEL...)
 - Resilience: failure rate can be as high as 1 failure/hour on exascale machines. Codes must be *resilient* to node failures.

- Develop three French MHD codes: Dyablo, Idefix & Shamrock, targeting accelerated machines based on modern C++
 - Why 3? Reproducibility (different algorithms), Robustness, testbed of different technological choices
 - Avoid the unmaintainable "one code to rule them all"
- Builds up on existing prototypes from CEA and CNRS
 - Minimize risk (prototypes have already been validated against standard) test suites)
 - Maximize scientific impact (shorter development to get scientific applications out)
- Simulation data sharing with the community though Galactica
 - Databases disseminated across local meso-centers (Tier 2)
 - Simplify the re-usability of published simulation data
- FAIR principle (Findability, Accessibility, Interoperability, and Reuse).
 - Codes publicly released under Open Source licenses

The Galactica web server http://www.galactica-simulations.eu

The 3 code prototypes

Dyablo

- Block-based adaptative mesh refinement
- Kokkos-based performance portability
- Hydro+particles

- Stretched curvilinear grids - Kokkos-based performance portability - Constrained transport MHD - In production on national centers - First science publications are out

- Meshless smoothed particle hydrodynamics
- SYSCL-based performance portability
- Hydrodynamics

Disk winds

Planet-disk interaction

Idefix

- Idefix is technically a new code (written from scratch), finite-volum algorithm in C++ 17, relying on Kokkos meta-programming object
 - 1st, 2nd or 3rd order in time (using Runge-Kutta TVD time integ
 - 1st, 2nd, 3rd, 4th order spatial reconstruction
 - Constrained transport for the MHD module
- Inputs, outputs and data structures are very similar to Pluto: simplif portability
- Strong encapsulation: each physical module/algorithm is a C++ obj constructor/destructor
- Method paper : Lesur+2023, A&A, 677, A9
- Online documentation: <u>idefix.readthedocs.io</u>
- Code under CECILL license, available on GitHub: <u>github.com/idefix-code/idefix</u>

≡ () idefix-code / ide	fix			
<> Code () Issues 5	្រៀ Pull requests 1 🖓 Disc	cussions 🕞 Actions 🖽 Pr	rojects 🖽 Wiki 😲 Security	•••
idefix Public	🖈 Edit Pins	▼ ③ Unwatch 4 ▼ %	Fork 9 - Starred 14	•
१९ master 🗸	Go to file	Add file - <> Code -	About	礅
₽ Branches 📀 Tags			A new finite volume code des to run on many architectures,	igned such
glesur V2.0.02 (#209)		✓ 2 weeks ago 🕚 1,626	as GPU, CPU and manycores, using Kokkos.	
.github	BUG: Fix self gravity (#202)	last month		
cmake	V2.0.02 (#209)	2 weeks ago	hnc any kokkos	

ne Godunov		
sts.	Feature	Statu
grators)	HD & MHD	
	Multiple Riemann solvers (Lax, HLL, HLLC/D, Roe)	
	Geometry (cartesian, cylindrical, spherical, polar)	
fied setup	Non-ideal MHD (Ohmic, Ambipolar, Hall)	
	MPI, MPI+OpenMP, MPI+Cuda, MPI+HIP	
ject with its own	Checkpointing & restart	
	Super time-stepping (RKL scheme: viscosity, ambipolar diffusion, Ohmic resistivity)	
	Orbital advection (FARGO)	
	Radiative transfer	
	Dust (particle approach)	(not yet public)
	Dust (fluid approach)	
	Self gravity	

Planet-disc-MHD wind interaction

Idefix code [Lesur+2023], static mesh refinement in the disc $(N_R, N_\phi, N_z) = (640, 2048, 384)$

Jean Zay GPU (IDRIS), 128x Nvidia V100

Planet-disc-wind interaction in action

[Wafflard-Fernandez & Lesur 2023]

3D Circulation around a planet

Accretion streamer « through » the gap

Wind « plume »

Outwards giant planet migration

Wafflard-Fernandez + 2024, in prep

Take away messages

• Future French & European clusters (including Exascale machines) will be GPU-based

• Exploiting these accelerated cluster requires a full rewrite of existing codes

 Several projects have started to write/port existing codes (PEPR Origins, PEPR Numpex). These are short-term projects, which don't address the question of maintenance, formation and deployment on future architectures

• IDEFIX is one such Exascale-ready community code. Open source, multi-physics, tested on all available clusters in France on up to 4000 GPUs

