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Approches science des données pour l’exploration des
environnements circumstellaires en imagerie

à haut contraste & haute résolution angulaire
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Exoplanetary science – some key scientific drivers
VLT/SPHERE

Chauvin+ 2017

HIP 65426 b

VLT/SPHERE

Boccaletti+ 2020

Keppler+ 2018 Haffert+ 2019

PDS 70 VLT/MUSEVLT/SPHERE

AB Aurigae

hydrodynamical model

Frequency and diversity of planets? Architecture of systems?
How do planets form? How do planets interact with the disk? 1 / 13
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Goal: modeling the nuisance component (speckles + noise)
angular differential imaging (ADI) = temporal diversity

Peculiarities
Faint signal from the exoplanets
Non-stationary and spatially correlated strong nuisance component
Strong fluctuations (stellar leakages)
Multi-spectral data available

⇒ Signal unmixing is critical 2 / 13
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Goal: modeling the nuisance component (speckles + noise)
angular & spectral diff. im. (ASDI) = temporal & spectral diversity

exoplanetsexoplanets coronagraph

star

Peculiarities
Faint signal from the exoplanets
Non-stationary and spatially correlated strong nuisance component
Strong fluctuations (stellar leakages)
Multi-spectral data available

⇒ Signal unmixing is critical 2 / 13
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Accounting for the correlations of the nuisance component

3

empirical distribution 
within a patch

correlations are ignored

3

distribution empirique 
dans un patch

corrélations ignorées

3

correlations are
      modeled

beyond white noise hypothesis

standard processing pipeline

pixel (N) time (T) channel (L)

estimation of the local statistical 

K

K

⇒ unsupervised and regularized estimation from the data 3 / 13
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Accurate estimation in large dimension – example
• Low nb of samples ⇒ empirical covariances very noisy / rank deficient
• Data-driven and spatially adaptive regularization by shrinkage:

⇒ optimal estimation by risk minimization for various structures
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Data science: essential for high-contrast imaging
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Regularized reconstruction – framework
• Data model: r = Ax + f ∈ RNLT with x ∈ RN ′L, f ≫ Ax .

• Direct operator: A ≡ scaling ◦ fov ◦ transmission ◦ rotation ◦ blur.

blur transmission fov
rotation scaling

L LT

Regularized reconstruction of the spatio-spectral flux distribution x

Solving an inverse-problem:
x̂ = arg min

x>0
{C (r,x, A, Ω,µ) = D(r, Ax, Ω) + R(x,µ)} ,

D(r, Ax, Ω): data-fidelity term, depends on Ω statistics of f ,
R(x,µ): regularization term, depends on hyperparameters µ.

6 / 13
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Results: disk reconstruction from SPHERE-IFS data

statistical model ⇒ reduced residual stellar leakages
image formation model ⇒ reduced artifacts & improved resolution

Joint spectral processing ⇒ critical for complex disk structures
Flasseur+, submitted to MNRAS, 05/2024 (https://arxiv.org/abs/2109.12644) 7 / 13

https://arxiv.org/abs/2109.12644


Context Methodology Joint unmixing and deconvolution Detection by deep learning Conclusions

Statistical modeling: removing (most of) the correlations
temporal mean

centered & whitened observations

spatial patch covariancescentered observations

K pixels
K

Contrast and stationarity are improved

Residual structures / noise 
will be captured by deep learning

8 / 13
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Deep learning: capturing residual correlations

Whitening

observation-dependent model 

data

output:
detection map

work funded by            ADI: Flasseur+, MNRAS 2023 (https://arxiv.org/abs/2303.02461)
ASDI: Flasseur+, EUSIPCO, 2023 (https://arxiv.org/abs/2306.12266) (PI: A.-M. Lagrange)9 / 13
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Results: improved detection sensitivity
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statistical model (PACO)

ultimate detection limit
=

photon noise limit

empirical model (PCA)
empirical model (cADI)

VLT/SPHERE-IRDIS data
HIP 88399, H2-H3 band

statistical + deep learning
observation-dependent (deep PACO)

statistics + deep learning ⇒ gain & optimal far from the star
work funded by            ADI: Flasseur+, MNRAS 2023 (https://arxiv.org/abs/2303.02461)

ASDI: Flasseur+, EUSIPCO, 2023 (https://arxiv.org/abs/2306.12266) (PI: A.-M. Lagrange)10 / 13
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Deep learning: capturing residual correlations

improved robustness

reconstruction loss (flux)
instead of detection loss

Whitening

observation-dependent model (1) observation-independent model (2)

Whitening

Normalization

Common part: whitening 
via estimation of spatial covariances 

deep models for
pre-processing

(speckles aligned)
AND

source detection
(object aligned)

correlations captured 
at a larger spatial scale

Outputs 
model (1): binary detection map

model (2): residual flux distribution cube
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Results: deep learning by-passes the limits of ADI
VLT/SPHERE-IRDIS data parallactic rotation ≃ 23°
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Results: deep learning by-passes the limits of ADI
VLT/SPHERE-IRDIS data parallactic rotation ≃ 10°
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Results: deep learning by-passes the limits of ADI
VLT/SPHERE-IRDIS data parallactic rotation ≃ 6°
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Results: deep learning by-passes the limits of ADI
VLT/SPHERE-IRDIS data parallactic rotation ≃ 2°!
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Progresses in data science ⇒ promising results
Some examples:

Chomez+, to be submitted, 2024

Chomez+, 2023b, A&A 
picture of the week: 18 Sept. 2023

(%
)

⇒ improved completeness on VLT/SPHERE
> 20 candidates to be confirmed with second epoch analysis

a work funded by                     (PI: A.-M. Lagrange) 12 / 13
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What’s next?
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Thank you



Context Methodology Joint unmixing and deconvolution Detection by deep learning Conclusions

Accurate estimation in large dimension – example
• Low nb of samples (T ≃ L ≃ K) ⇒ Ŝspat

n and Ŝspec
n noisy/rank-deficient

• Data-driven and spatially adaptive regularization by shrinkage:

⇒ optimal estimation by risk minimization for various structures

ρ̂n = arg min
ρ∈[0,1]

E(∥Ĉ − C∥2
F) = E(tr((C − γŜ)(F̂ − Ŝ))

γE(tr((F̂ − Ŝ)2))
, with E(Ŝ) = γ−1C .
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Accounting for the variability of the nuisance component

+ robustness 
inverse problem

inverse problem

classical pipeline
reconstructiondata  weights 
classical pipeline

inverse problem

+ robustness 
inverse problem

⇒ large stellar leakages + outliers are identified & neutralized locally
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Model relevance – empirical distribution of residuals

expected distribution: 

⇒ modeling correlations of the nuisance is critical!
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Unsupervised & optimal setting of the algorithm
Optimizing a quantitative criterion

R(x, µ ) = µℓ1

∑N ′

n=1
∑L

ℓ=1 |xn,ℓ| + µsmooth

√
1
L

∑L
ℓ=1 ∥∇nx·,ℓ∥2

2 + τ2

⇒ Minimizing e.g. SURE (unbiased MSE estimator):
SURE(µ) =

∑
n, t

||rn,t − m̂n − [Axµ(r)] n,t||2
σ̂−2

n,t Ĉ−1
n

+ 2 tr
(
A Jvµ(r)

)
− NL

by accounting for the local statistics Ω of f .

Example on VLT/SPHERE-IRDIS data (star HR 4786):

-6
4.

5
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Results – SPHERE-IFS data with synthetic disks

0.15''0.15''0.15''
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Unmixing point-like sources and extended features

disk
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Learning pipeline
Tasks: supervised pixel-wise classification, supervised regression.

estimated photometry

[s] W

during training only

observations

real source

pixels

T frames

pixelsM
random temporal shuffle

(detection & characterization)

source masking 
(characterization only)

injection of synthetic 
training sources

local update of 
pre-processing (see Fig. 4)

D

pixelsM

+

[s]

[s]

[s]

P

derotation

[s] [s]

[s]
[s] [s]

pixelsM

pixelsM

en
co
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r

de
co
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r

11M parameters

CNN:
U-Net en

co
de

r

1.2M parameters

CNN:
VGG-like

detection map collapse

[s]

[p]

patch extraction

[p]

pixelsJ

loss lossloss

detection module characterization module

Detection loss: similarity metric for very unbalanced classes.

L
(
y[s], ŷ[s]

)
= 1−

∑M
m=1 y

[s]
m ŷ

[s]
m + ϵ∑M

m=1 y
[s]
m + ŷ

[s]
m + ϵ︸ ︷︷ ︸

source error

−
∑M

m=1(1 − y
[s]
m )(1 − ŷ

[s]
m + ϵ)∑M

m=1 2 − y
[s]
m − ŷ

[s]
m + ϵ︸ ︷︷ ︸

background error
⇒ Dedicated data-augmentation + whitening + loss:

deep model specialized for each datacube without overfitting
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Results: an example of detection maps
VLT/SPHERE-IRDIS data (HD 95086)
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(Flasseur+ 2023, MNRAS, https://arxiv.org/abs/2303.02461)

https://arxiv.org/abs/2303.02461
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Generative approach via diffusion model
Principle:
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Results:
reconstructed speckles reconstructed object groundtruth object
(normalized by tiles)examples of training speckles examples of generated speckles

⇒ Realistic generated speckles but limited detection sensitivity
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Model ablation: importance of statistical model
ROCs: mean results on VLT/SPHERE-IRDIS data
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statistical + deep model 
(obs. independent)

statistical model

statistical + deep model 
(obs. dependent)

statistical + deep model 
(obs. independent)

BUT without COvariances

⇒ Modeling statistically the covariances is critical!
T. Bodrito, O. Flasseur+, to be submitted
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Fusing multiple observations
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cartes unitaires

N observations
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HR 8799 c
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carte combinée
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combination

Dallant+ 2023 A&A gain in sensitivity =
√

Nobservations
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