Approches science des données pour |'exploration des
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Context

Exoplanetary science — some key scientific drivers
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Frequency and diversity of planets? Architecture of systems?

How do planets form? How do planets interact with the disk?
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Context

Goal: modeling the nuisance component (speckles + noise)

angular differential imaging (ADI) = temporal diversity

data spatio-temporal slice cuts

tog = 24 min

PSF
planeta?y signal

Peculiarities

Faint signal from the exoplanets
Non-stationary and spatially correlated strong nuisance component
Strong fluctuations (stellar leakages)
Multi-spectral data available
= Signal unmixing is critical 5
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Context

Goal: modeling the nuisance component (speckles + noise)
angular & spectral diff. im. (ASDI) = temporal & spectral diversity

Peculiarities

Faint signal from the exoplanets
Non-stationary and spatially correlated strong nuisance component
Strong fluctuations (stellar leakages)
Multi-spectral data available
= Signal unmixing is critical




Methodology

Accounting for the correlations of the nuisance component

standard processing pipeline

correlations are ignored

empirical distribution
Jwithin a patch =

/

A~spec
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~spat
Cn
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spat spec
n,1lt7)\\: LLZON + On,t Un,t,x Unt X ™~ N (07 (I)(CnI acnp ))
pixel (N) time (T) channel (L)

beyond white noise hypothesis
= unsupervised and regularized estimation from the data /13



Methodology

Accurate estimation in large dimension — example

e Low nb of samples = empirical covariances very noisy / rank deficient

max

sample
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Methodology

Accurate estimation in large dimension — example

e Low nb of samples = empirical covariances very noisy / rank deficient
e Data-driven and spatially adaptive regularization by shrinkage:

max
shrinkage shrinkage
factor\ tactor\
(1-p,) + 0 =
!  Bimin - — .
sample diagonal covariance shrinkage
estimator estimator

covariance
= optimal estimation by risk minimization for various structures
shrinkage (proposed)
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Flasseur, Thiébaut+, accepted, 2024 (https://arxiv.org/abs/2403.07104)

o


https://arxiv.org/abs/2403.07104

Methodology

Data science: essential for high-contrast imaging

disk reconstruction

mass (Jupiter mass)
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Joint unmixing and deconvolution

Regularized reconstruction — framework

e Data model: »r = Ax + ERNLTWithmGRNIL, >Ax.

e Direct operator: A = scaling o fov o transmission o rotation o blur.

[ rotation | | scaling |

Regularized reconstruction of the spatio-spectral flux distribution

Solving an inverse-problem:

x =arg min{€(r,z,A,Q pu)=2(r,Ax,Q)+ Z(x,pn)},
>0

o 7(r,A x,): data-fidelity term, depends on (2 statistics of |,

@ Z(x,1): regularization term, depends on hyperparameters L.
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Joint unmixing and deconvolution

Results: disk reconstruction from SPHERE-IFS data

HR 4796 SAQO 206462 MWC 758 AB Aurigae
1.6

L Lem : s
» N l ’.’ . . ] .‘
- I 1

]_\] 0.15" 0.30" 0.30"] 0.25"

|
Alpermn)

statistical model = reduced residual stellar leakages
image formation model = reduced artifacts & improved resolution
Joint spectral processing = critical for complex disk structures
Flasseur+, submitted to MNRAS, 05/2024 i



https://arxiv.org/abs/2109.12644

Detection by deep learning

Statistical modeling: removing (most of ) the correlations

temporal mean centered observations spatial patch covariances

K pixels
b \q

centered & whitened observations

—> Contrast and stationarity are improved

Residual structures / noise
will be captured by deep learning

T 8/13



Detection by deep learning

Deep learning: capturing residual correlations

observation-dependent model output:
detection map
Speckles aligned Object aligned
amainl -kt Saiaial-"-lins %
: y \ | HxW \
I G’atch AggregatiorD I I !
I TxH'xW' . : :
I i I HxW |
I Whitening I i ( Averaging ) I
i W . ! - I
I : N i T g s
I I
A l

Z it 7 ( Derotation )
ADI: Flasseur+, MNRAS 2023 (https://arxiv.org/abs/2303.02461) work funded by C(OBREX
ASDI: Flasseur+, EUSIPCO, 2023 (https://arxiv.org/abs/2306.12266) (PI: A.-M. Lagrange)




Detection by deep learning

Results: improved detection sensitivity

| VLT/SPHERE-IRDIS data
P empirical model (cADI) | HIP 88399, H2-H3 band

empirical model (PCA)

o
&

tistical model (PACO)

statistical + deep learning
observation-dependent (deep PACO)

10764

50 contrast (exoplanet / star)
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statistics + deep learning = gain & optimal far from the star

ADI: Flasseur+, MNRAS 2023 (https://arxiv.org/abs/2303.02461) work funded by C(BREX
ASDI: Flasseur+, EUSIPCO, 2023 (https://arxiv.org/abs/2306.12266) (PI: A.-M. Lagrange)



Detection by deep learning

Deep learning: capturing residual correlations

observation-dependent model (1)
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Common part: whitening
via estimation of spatial covariances

model (1): binary detection map

model (2): residual flux distribution cube

reconstruction loss (flux)

NI\ instead of detection loss
N
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improved robustness

observation-independent model (2)
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Detection by deep learning

Results: deep learning by-passes the limits of ADI
VLT /SPHERE-IRDIS data parallactic rotation ~ 23°
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T. Bodrito, O. Flasseur+, to be submitted



Detection by deep learning

Results: deep learning by-passes the limits of ADI
VLT /SPHERE-IRDIS data parallactic rotation ~ 10°
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Detection by deep learning

Results: deep learning by-passes the limits of ADI
VLT /SPHERE-IRDIS data parallactic rotation ~ 6°
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Detection by deep learning

Results: deep learning by-passes the limits of ADI
VLT /SPHERE-IRDIS data parallactic rotation ~ 2°!
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Conclusions

Progresses in data science = promising results

Some examples:
102 - New planetary-mass object found in quadruple
system
Lgs.picture of the week: 18 Sept. 2023
) Chomez+, 2023b, A&GA

. -— C (subtracted )
. ® -—Cb
s B

“*ﬁ A (hiddan)

10 10°
Semi major axis (au)
Chomez+, to be submitted, 2024

= improved completeness on VLT /SPHERE
> 20 candidates to be confirmed with second epoch analysis

a work funded by C( JBREX (PI: A.-M. Lagrange)



Conclusions

What's next?

Goals:
imaging in reflected light,
Neptune analogs, access *
to telluric...Earth's
twins...prebiotic signs...

€Oy, cH,

Data peculiarities: high spectral diversity, instabilities, highly structured PSF, massive
Some strategies: statistical /deep learning, data-driven approaches, data fusion

" mseeing = .43 smmsecing — (.57 ==sceing = 0.73

N0 SOUrce

10 SOUrce

" molecular mapping statistical approach
o (with prior about SED} (WIthout prier about SED)
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Conclusions

What's next?

Goals:
imaging in reflected light,
Neptune analogs, access *
to telluric...Earth's
twins...prebiotic signs...

Data peculiarities: high spectral diversity, instabilities, highly structured PSF, massive
Some strategies: statistical /deep learning, data-driven approaches, data fusion

CHB 0% R 4x30 min exp., H-High band

+ * combined
d = detection map
data

(0003:01-01 0004-07-01 fusion algo.
(Dallant+
2023 ABA)

S
. ean /N = 2.6 SN aTaa estimated orbits
|oRom e @ enirtesy simulations 4+ photometry code: HARMONT simulation team, 13/13



Conclusions

Thank you



Conclusions

Accurate estimation in large dimension — example
e Low nb of samples (T'~ L ~ K) = §Spat and §5Pec noisy /rank-deficient

° Data driven and spatially adaptlve regularization by shrmkage
., max
shrinkage shrinkage )
factor factor \

= (1-7)88

min

diagonal covariance

i
shrinkage sample
estimator covariance estimator

=- optimal estimation by risk minimization for various structures
N E(tr((C — 4S)(F — S o
prn = arg min E(||C — CJ|g) = (er(( al )(A )), with E(S) =y 'C.
VE(tr((F - 5)?))

p€[0,1]
diagonal loadmg »‘ shrinkage (proposed)
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Flasseur, Thiébaut+, accepted, 2024 (https://arxiv.org/abs/2403.07104)
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Conclusions

Accounting for the variability of the nuisance component

j reconstruction
classical pipeline

inverse problem
+ robustness

in N max| max
= large stellar leakages + outliers are identified & neutralized locally




Conclusions

relevance — empirical distribution of residuals
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= modeling correlations of the nuisance is critical!



Conclusions

Unsupervised & optimal setting of the algorithm

Optimizing a quantitative criterion

N’ L L g
R(@,[B]) =[] Tney T el + £ i 1V el + 72

= Minimizing e.g. SURE (unbiased MSE estimator):
SURE(p) = Z |7t — Mn — [A 2, (7)] ,l‘f|\§,2 o1 t2tr (AJ,,(r)) —NL

n,t

by accounting for the local statistics (2 of

Example on VLT /SPHERE-IRDIS data (star HR 4786):




Conclusions

Results — SPHERE-IFS data with synthetic disks
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Conclusions

Unmixing point-like sources and extended features

iteration 0
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final unmixing
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Conclusions

Learning pipeline
Tasks: supervised pixel-wise classification, supervised regression.

peore source masking injection of synthetic local update of P
observations (characterization only) training sources pre-processing (see Fig. 4) ~ :----° eojation.... ...
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Detection loss: similarity metric for very unba/anced classes.

Mo ymgm e M (1-y)(1— g+

2 (y ) = 1-
( ) Mly[s]+y£z]+e 2%212—?;7[5?—@7[2]4-6
source error background error

= Dedicated data-augmentation + whitening + loss:
deep model specialized for each datacube without overfitting




Conclusions

Results: an example of detection maps

VLT /SPHERE-IRDIS data (HD 95086)

empirical model (cADI) 5

o pm—

empirical model (cADI variant))|[&}
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2 Sl
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statistical + deep learning
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(Flasseur+ 2023, MNRAS, https://arxiv.org/abs/2303.02461)
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Conclusions

Generative approach via diffusion model

Principle:

Data Gaussian Noise Reconstruction Gaussian Noise

-
>

forward process (= training)

@
9] )
) =
'&U 53
3 5]
2, 2,
17) wn

objects
objects

<

backward process (= inference) ... o0 y

Results:

reconstructed speckles reconstructed object groundtruth object
examples of training speckles examples of generated speckles (normalized by tiles)

= Realistic generated speckles but limited detection sensitivity



Model ablation: importance of statistical model
ROCs: mean results on VLT /SPHERE-IRDIS data

=0

TPR for FDR:

0.5 1
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statistical + deep model
(obs. independent)

\Statistica\ model

statistical + deep model
(obs. independent)
BUT without COvariances

0 20 40 60 80
parallactic rotation (degrees)

= Modeling statistically the covariances is critical!
T. Bodrito, O. Flasseur+, to be submitted
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Conclusions

Fusing multiple observations
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