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The first gravitational wave detection

LIGO-Virgo GW150914
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What I won’t speak about...

LB, Dones, Mougiakakos ’23

(A fraction of) the conservative Lagrangian at next-to-next-to-leading order in

scalar-tensor theories

How to arrive at this result?

▷ Precise gravitational waveforms in general relativity

◦ dynamics of compact objects

◦ gravitational flux and waveform (phase & amplitude)

▷ Do the same for other theories of gravity



... and what I will say instead

Why do we need:

◦ to have a bank of extremely precise waveform templates?

▷ data analysis: signal h ∼ δL
L ∼ 10−18

◦ to use different modeling techniques?

▷ GR highly non linear =⇒ numerical and analytical calculations

◦ to go beyond GR?
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Going beyond GR: why?

▷ high energy regime: quantum completion of GR

▷ low energy regime: dark sectors

◦ dark energy −→ cosmological constant and/or modified gravity?

◦ dark matter −→ new matter and/or modified gravity?



The current gravitational wave universe



Chercher une aiguille dans une botte de foin *

* Looking for a needle in a haystack

LIGO-Virgo GW151226
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The future gravitational wave universe

Einstein Telescope science case (2021)

LISA definition study report (2023)



Gravitational waveforms

LISA definition study report 2023



The different methods
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▷ Inspiral-Merger-Ringdown (IMR): effective-one-body, phenomenological &

surrogate models



The different methods: gravitational self-force
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▷ extreme mass ratio inspiral

▷ expansion in q = m1
m2

≪ 1

▷ resonances, par ex. 2:3

Barack & Pound ’18



The different methods: numerical relativity

▷ solving the full Einstein equations

▷ computationally expensive

▷ add spins, eccentricity, etc.

I. Markin, T. Dietrich, H. Pfeiffer, A. Buonanno (Potsdam University and Max

Planck Institute for Gravitational Physics)
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The different methods: post-Newtonian

▷ expansion in ϵ =
v2
12
c2

∼ G(m1)

r12c2
≪ 1

▷ point-particle approximation

▷ add spins, tides, etc.

Tanay et al. ’23
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Full IMR waveform: the EOB class

LISA waveform white paper ’23



Full IMR waveform: the Phenom class

h(f) = A(f) eψn(f) ψn = {φ0,..7, σ0..4, β1..3, α0..5}

Kwok et al. ’21



GR: a beautiful and successful theory

Kramer et al. ’21

h(f) = A(f) eψn(f)+δψn(f) δψn = {δφ−2,0,..7}

LIGO-Virgo ’21



Focus on a specific effect: scalar tides

Reminder in GR

▷ electric and magnetic type Love numbers

▷ effacement principle: start at 5PN ∼
(
v
c

)10
In scalar-tensor

▷ scalar dipole moment Eij ∝ ∂ijϕ ⇒ scalar-induced tidal deformability

▷ enhanced effect wrt GR: 3PN
Creci et al. ’23

▷ more important at low frequency (LISA) or highly scalarized objects
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Conclusion

Why?

◦ we need a bank of extremely precise waveform templates both in GR

and beyond

▷ to test all specific effects

▷ include environmental effects

◦ we need to use different modeling techniques

▷ analytical calculations are still required (LISA, ET)

▷ include all effects spins, tides, etc.
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Merci !



Lac de Charpal (Lozère)


